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Properties of the Sequence 3 - 2n + 1 

By Solomon W. Golomb* 

Abstract. For applications to fast finite field transforms, one is interested in the 

arithmetic of GF(p), where the order of the multiplicative group, 4p() = p - 1, is 

divisible by a high power of 2, and where the multiplicative order of 2 modulo p 

is large. Primes of the form 3 * 2n + 1 appear well-suited to these objectives. 

Results are obtained on the divisibility properties of the numbers An 3 2n + 1, 

and on the exponent of 2 modulo An when An is prime. Generalizations to 

various related types of sequences are also considered. 

1. Introduction. It is frequently of interest to study the divisibility properties 

of exponentially growing sequences of integers. Many such sequences {Sn} have been 

studied extensively, including the Fibonacci sequence and the Mersenne sequence 
(2n-1), which satisfy SO = O,SS = 1Sn+l = aS + bS0 for n > 1, and (Sm, SO) 

= S(m,n) A representative sequence which does not satisfy the (Sm' SO) = S(m,n) 
condition is {An} {3 * 2n + }. Its divisibility properties are treated here in some 

detail. 
For applications to fast transforms of the type considered by Rader [1], and by 

Reed and Truong [2], we are interested in the arithmetic of GF(p), where the order of 
the multiplicative group, ap(p) = p - 1, is divisible by a high power of 2, and where the 

multiplicative order of 2 modulo p is large. Primes of the form 3 - 2n + 1 are well- 
suited to these objectives. We develop results on the factorization of the numbers An = 

3 * 2n + 1, and on the index of 2 modulo An when An is prime. Generalizations to 

related types of sequences are also considered. 

2. Factorization Results. Let An = 3 * 2n + 1, n > 1. We shall show that there 

are infinitely many primes q (Type I primes) which divide members of the sequence 

{An}, and infinitely many primes q (Type II primes) which do not. 
THEOREM 1. A prime q is of Type I if and only if - 3 2k (mod q) for some 

positive integer k. 
Proof. Clearly q is of Type I if and only if 

An = 3 *2n + 1 O (mod q) for some n, 

that is, if and only if 3 * 2n - 1 (mod q). Since 2q 1 =1 (mod q), we have -3 

2k (mod q) with k = q - n - 1. 

Reinark. The Type I primes are all the prime factors of the numbers 2k + 3. 
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These include the primes of the form 2k + 3, namely {5, 7, 11, 19, 67, 131, . . . }, 

as well as the prime factors of the composite numbers of this form yielding additionally 
{13, 29, 37, 53, 59, 61, ... . 

THEOREM 2. If q 17, 23 (mod 24), then q is of Type II. 
Proof. It follows from q-17, 23 (mod 24) that (21q) = 1 and (- 31q) = - 1. 

If q were of Type I, then 2k-3 (mod q), so 1 = (21q)k = (2kIq) = (-31q) = -1, a 
contradiction. 

(The relevant results of quadratic residue theory used here are: 

(i) (- 1/q) = + 1 iff q-+ 1 (mod 4), 
(ii) (21q) = + 1 iff q + 1 (mod 8), and 
(iii) (3/q) = + 1 iff q ? 1- (mod 12).) 
Remark. By Dirichiet's Theorem, there are infinitely many primes q-17 

(mod 24), including {17, 41, 89, 113, 137, .. .1, and also infinitely many primes q 
23 (mod 24), including {23, 47, 71, 167, . . }. Invoking also the density results on 
primes in arithmetic progressions, at least one-fourth of all primes are of Type II. 

The next three results are similar to Theorem 2. 
THEOREM 3. If q 13, 19 (mod 24), then q does not divide A2 n-1. 
Proof. If q 13, 19 (mod 24), then (- 61q) = (2/q)(- 3/q) = (- 1)(+ 1) = - 1. 

Also, if 3 22n+1 1 (mod q), then (3 * 2+ + -6 (mod q), so 

(3-' 2n+ ) ((3 * 2n+1 2 ) (6 

a contradiction. 
THEOREM 4. Ifq is a prime and q IA2n+ then q = 1, 5, 7, or 11 (mod 24). 
Note. Examination of Table I reveals that primes in all four of these residue 

classes modulo 24 are found among the factors of A2 n + I 
Proof. This merely combines the results of Theorem 2 and Theorem 3. 

THEOREM 5. If q IA2n, q prime, then q 1 (mod 6). 
Note. It is seen in Table I that primes in all four of the residue classes 1, 7, 13, 

19 modulo 24 are found among the factors of A2n. 
Proof. If3*22 1 (modq), then (3 2n)2 3 (mod q), so (- 31q) 

which implies q =1 (mod 6). 
Note. For even n = 2m, An = 1 + 3 * 22m = 12 + 3 - (2m)2 is of the form 

a2 + 3b2, and the theory of factorization in the ring Z(Qo) of the Eisenstein integers 
can also be used to prove Theorem 5. 

THEOREM 6. Let q be a prime of Type I, and let nO be the smallest positive 
integer such that q divides AnO. Then q divides An if and only if nnO (mod e), 

where e is the exponent of 2 modulo q. 
Proof. If q lAn, then 3 * 2n--1-33* no (mod q), so 2n no = (mod q). 

Hence, e In -nO. If, on the other hand, e In -no, then 2n-n n 1 (mod q), so 3 - 2n 
+ 1 3- 2n? + 1 (mod q). 

Remark. To determine whether q is of Type I or Type II, it suffices to test 
whether q divides any of A1, A2, . . ., Ae, where e is the exponent of 2 modulo q. 
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Algorithm. To construct a table (see Table I) of the factors of the numbers 

An, we find for each prime q of Type I the smallest number Ano divisible by q, and 
then observe that q divides every eth term thereafter. Thus, when q = 7, e = 3, and 

every third term in the sequence {An} is divisible by 7. Similarly, every fourth term is 

divisible by 5, etc. 
THEOREM 7. Numbers in the sequence {A 6n} have no prime factors less than 

61. (Note, however, that 61 divides A24 and 67 divides A60.) 
Proof. For each of the primes q of Type I which satisfy Theorem 5, there is an 

no and an e, depending only on q, such that q divides An if and only if n-nO 

(mod e). For each such prime < 61, e has a factor in common with 6, and nO + ej 
can never be a multiple of 6, j = 0, 1, 2..... (The direct verification required for this 

is readily found in Table I.) 
THEOREM 8. There are infinitely many primes of Type I, and infinitely many of 

Type IL 
Proof. By the corollary to Theorem 2, there are infinitely many primes of Type 

II. To show that there are infinitely many primes of Type I, we use the following 
proof by contradiction, suggested by L. R. Welch. 

Suppose there were only finitely many primes, q1, q2,. . . , q*k which divide 
the terms of {An}, n > 1. Then 3 * 2n + 1 = HI. lqein, and modulo the product of 

those qi for which ein > 0, we have 
k e. 

3 - 2n + I1= I qi in - (mod I qi) 
i- 1 ein>? 

for all n. Let N = L.C.M. {p(q1), p(q2), . .. ., p(qk)} > 1, where ep is Euler's phi- 
function. Then clearly 2N _ 1 (mod IleiN> oq1),fromwhich3 * 2 +1-4 
(mod leN >O q1), which contradicts 3 - 2N + 1 0 (mod He.N>o qi), since all the 

q, are odd. 

3. The Exponent of 2 Modulo p. In this section we will assume that p is a 
prime of the form 3 * 2n + 1. Since sp(p) = 3 * 2", the order of any element in the 

multiplicative group modulo p is of the form 3i * 2*, where 0 j < 1 and 0 ? k S n. 
We will specifically be concerned with the order of 2 in this group, i.e. the exponent 

e2(p) of 2 modulo p. 
THEOREM 9. If p-3 = 2n + 1 is prime, then 2 is not primitive modulo p 

except in the case p = 13. In fact, e2(p) divides 3 * 2n-1 in all cases except p = 13. 

Proof For 2 to be primitive modulo p, it must be a quadratic nonresidue of p. 
Hence, + 3 (mod 8). But if n > 3, then p 1 (mod 8). Also, for n = 1, 

p = 7 : ? 3 (mod 8). Finally, if n = 2, then p = 13, for which 2 is primitive. 
THEOREM 10. The exponent of 2 modulo a prime p = 3 - 2n + 1 fails to be 

divisible by 3 if and only if p divides a Fermat number. 
Proof. Suppose e2(p) = 2*, 0? k S n. Then 22 

k 1 (mod p), and p divides 
22k- 1 = FOF1F2 * Fk_l where Fi = 22i + 1. Then in fact p divides Fk-1, or 
else e2(p) would be less than 2k. Conversely, if p divides Fr = 22r + 1, then 22r= _ -1 
(mod p), 22r+ 1 _ 1 (mod p), and e2(p) is a divisor of 2r+ 1 and thus of the form 2k. 
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TABLE I 

Factorization of the Numbers An = 3 2n + 1 

n 3-2n + 1 Factorization n 3*2n + 1 Factorization 

1 7 PRIME 22 12582913 7 - 313 - 5743 

2 13 PRIME 23 25165825 52 . 1006633 

3 25 52 24 50331649 61 * 825109 

4 49 72 25 100663297 73* 269 - 1091 

5 97 PRIME 26 201326593 13- 1567-9883 

6 193 PRIME 27 402653185 5-11?1399-5233 

7 385 5-7-11 28 805306369 7*37-139'22369 

8 769 PRIME 29 1610612737 79'20387503 

9 1537 29*53 30 3221225473 PRIME 

10 3073 7 * 439 31 6442450945 5 -7- 184070027 

11 6145 5-1229 32 12884901889 192-35692249 

12 12289 PRIME 33 25769803777 13613?- 1893029 

13 24577 7 - 3511 34 51539607553 7-181-40678459 

14 49153 13?19-199 35 103079215105 5-823-25049627 

15 98305 5- 19661 36 206158430209 PRIME 

16 196609 7-28087 37 412316860417 7-11-29-59-3129611 

17 393217 11-35747 38 824633720833 13-829-1063-71983 

18 786433 PRIME 39 1649267441665 5*316133-1043401 

19 1572865 5*7-44939 40 3298534883329 7*10243-46004029 

20 3145729 727 -4327 41 6597069766657 PRIME 

21 6291457 347*18131 42 13194139533313 103 128098442071 

The additional cases known [3] where 3 * 2n + 1 is prime occur for n 66, 
189, 201, 209, 276, 353, 408, 438, and 534. 

COROLLARY. The exponent of 2 modulo a prime p = 3 * 2n + 1 fails to be 

divisible by 3 if and only if p divides a Fermat number F1 with j S n - 1. 
(This is in fact shown in the proof of Theorem 10.) 
Note. Two cases where a Fermat number has a prime factor p = 3 * 2n + 1 are 

known [3], namely 3 - 241 + 1 divides F38, and 3 * 2209 + 1 divides F207. That n 
must be odd for p to divide a Fermat number is established in the following theorem 
of Morehead [4]. 

THEOREM 11. If p = 3 * 22m + l is a prime, then e2(P) must be divisible by 3. 
(Hence, by Theorem 10, such a prime cannot divide any Fermat number.) 
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TABLE II 

Exponents of 2 modul0 primes p = 3 * 2n + i 

nl 3 -2'n ? 1 (prime) Exponent of 2 mod p 

1 7 3 =3.2n1 

2 13 12=3*2n 

5 97 48= 3 . 2n1 

6 193 96=32n-1 

8 769 384= 3 - 2n- 

12 12289 6144 = 3 2n1 

18 786433 393216 = 3 2 n-1 

30 3221225473 805306368 = 3 * n-2 

36 206158430209 103079215104 = 32n-1 

41 6597069766657 1649267441664 = 3 * n-2 

Proof If and only if 2 is a cubic residue modulo p, e2(p) will fail to be 
divisible by 3. The condition for 2 to be a cubic residue modulo a prime p is known 
[51, and can be stated as follows: 

2 is a cubic residue modulo a prime p, p 1 (mod 6), if and only if there are 
positive integers a and b such that p = a2 + 27b2, a # 0 (mod 3). 

Suppose then that p =3 22m ? 1 - a2 + 27b2 is prime. Then, factoring over 
the ring Z(Q) of the Eisenstein integers, p (1 + 2' /7) (1 - 2m j/_-3) 
(a + 3b \P3) (a - 3b \/-3). However, if p 1 (mod 6) is prime, it has a unique 
factorization as a product of two complex conjugate primes in the Eisenstein ring. 
Since 2m * 3b, the two factorizations obtained appear distinct. However, to complete 
the proof, we must verify that the two factorizations do not differ merely by unit 
factors. The only units in Z(Q) are the sixth roots of unity, ? 1 and ?(1 +? \/Y)/2. 
Clearly, the two factorizations differ by more than ? 1. Consider then 

?(1 ? VPY) I__? __3 _____m ? 
2 (1 + 2mV\ ) = + (1+322 + 2m3 v) 

222 

Since m > 1, both coefficients (1 ? 3 * 2')/2 and (2m ? 1)/2 are half-integers, and 
therefore cannot coincide with those of a ? 3b -F. 

The exponent of 2 modulo p for each prime p = 3 * 2n + 1 of Table I is 
shown in Table II. When this exponent is divisible by 2n-1, it indicates that 2 is not 
a quartic residue modulo p. The condition for 2 to be a quartic residue modulo p is 
known [5], and may be stated as: 2 is a quartic residue modulo p, where p 1 
(mod 8), if and only if there exist positive integers a and b such that p = a2 + 64b2, 
a # 0 (mod 2). 
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TABLE III 

Properties of the sequence 3 10' + 1 

n Prime factors of 3- iO + 1 Exponent of 2 

1 31 5 

2 7 x 43 

3 3001 1500 

4 19 x 1579 

5 13 x 47 x 491 

6 853 x 3517 

7 30000001 234375 

8 72 x 6122449 

9 7589 x 395309 

10 30000000001 300000000 

11 132 x 1775147929 

12 67 x 44776119403 

13 17 x 23 x 62191 x 1233721 

14 7 x 95773 x 447486691 

15 29 x 103448275862069 

16 31 x 379 x 15901 x 160581649 

17 13 x 2281 x 23911 x 423111547 

18 16921 x 5188801 x 34168681 

19 163 x 184049079754601227 

20 7 x 42857142857142857143 

From Table II, it is seen that 2 is sometimes a quartic residue modulo p = 32n 
+ 1 and sometimes not. No provable pattern has yet been discerned. 

4. Analogous Cases. The factorization properties of the sequence {2n + 3} are 
very, similar to those of the sequence {3 - 2n + 1}. The corollary to Theorem 1 states 
that both of these sequences have the same set of prime factors. As numbers in 
binary notation, the two sequences are mirrpr images of each other. Most of the 
theorems proved for {3 - 2n + 1} have obvious analogues for the sequence {2n + 3}. 
For example, when n is even, 2n + 31 (mod 6), and when this number is prime, 
the analogue of Theorem 11 holds, using essentially the same proof. 
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Let B be any positive even integer which is not a multiple of 3. The general 
sequence {3Bn + 1 } has many similarities to the special case {3 - 2n + 1 } already 
considered, and the numbers look particularly simple in base B notation. Moreover, 
Theorem 11 still holds: When n is even, 3 must divide the exponent of 2 modulo any 
prime p of the form 3Bn + 1. (The basic proof technique of Theorem 11 still applies.) 
However, it is easy, in this more general context, to produce numerous counterexamples 
when n is odd. Thus, with B=10 and n = 1, we get p = 31 = 22 + 27 - 12, and 2 
is a cubic residue modulo 31. Similarly, with B = 14 and n = 1, we get p = 43 = 42 

+ 27 - 12, and 2 is a cubic residue modulo 43. In Table III, we see factorizations of 
numbers of the form 3- IOn + 1, and the exponent of 2 when 3- Ion + 1 is prime. 

If one wishes to generalize from the sequence {3 2n 4- 1 } to the sequences 
{k- 2n + 1} for other odd values of k, there are extensive tables available [3], 
indicating when k- 2n + 1 is prime for all k < 100 and all n < 512. The basic test 

for primeness used in [3] was the following theorem of Proth (1878): 
THEOREM 12. Let N = k - 2n '+ 1 with 0 < k < 2n. Choose any a such that 

(a/N) = - 1. Then N is prime if and only if a(N-)12 = - 1 (mod N). 

For a proof of this theorem, and a discussion of this and related results, see [6]. 
The method used in the proof of Theorem 8 can be extended to obtain the 

following very general result on prime divisors of exponentially growing sequences of 
integers. The details are left to the reader. 

THEOREM 13. Let a1, a2, ... , ak be distinct positive integers such that none 

is a perfect power of another, wiith k > 1. Let c1, C2, ... , Ck be nonzero integers. 

Let f1(x), f2(x), . . , fk(x) be polynomials in x with integer coefficients, and positive 

leading coefficients. Then among the integer terms of the sequence {Sn} = {cl a4I (n) 

+ c2af2( ) + * * * + Ck4k(f) } there are infinitely many distinct prime factors. (The 

terms Sn will be integers for all sufficiently large values of n, since each of the 

polynomials fi(x) takes on only positive values for sufficiently large x.) 
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